Python Summer School, Day 1
Exercises, Part 11

Instructors: Pietro Berkes and Niko Wilbert

Exercise 1 - Design and implement a graph library

Goal: Design a set of classes to represent graphs; implement the library and use
unittests.

a)

Discuss with your partner a possible design for a set of objects that rep-
resent graphs. The graph class should be general enough to implement
directed and weighted edges. The nodes should be able to carry additional
data or behaviour. Think about the parts that compose a graph, and how
they relate to each other.

- Discuss possible object oriented ways to design this.

- What are possible applications of graphs? Which parts of the code
would vary in these applications?

Don’t read the rest of the exercise before completing a).

Implement three classes, one representing nodes (Node), one for edges
(Edge), and one the whole graphs (Graph). Nodes and edges should be
able should be able to give information like:

Who are your neighbors? Which nodes do you connect? Graph is an
object that manages a set of nodes and edges. It has methods to add /
remove new nodes and edges.

Write test cases for these classes. For example, you should test that when
a node is removed from a graph, the edges that connect it to its neighbors
should also be removed.

Discuss advantages and disadvantages of this design in a file called
design discussion.txt (just some brief notes or keywords). What hap-
pens to the design in an application with thousands of nodes and what
could you do about it?



Exercise 2 - Travel planner
Goals: Extend the graph library to solve a search problem.

In this exercise, your goal is to write a travel planning application based on the
classes of Exercise 1. We want to represent a set of cities as nodes in a graph,
with edges between nodes representing different kinds of transportation.

a) Create a network of cities that are connected by different modes of trans-
portation (Train, Plane, Boat). The edges should be directed and have
two kinds of weights: travel time and cost.

b) Extend the Graph class with a method that is able to search for the quick-
est or the cheapest path between two given cities. You'll have to imple-
ment an algorithm to find the shortest path in a weighted graph, starting
from any node. This can be done using Dijkstra’s algorithm, which is de-
scribed at http://en.wikipedia.org/wiki/Dijkstra_algorithm. Note
that due to the weights you will have to iterate through the edges or nodes
in the order of the least overall path cost.

The Python library contains a heapq module, which might be useful for
the implementation. The weight function will be in the first case the cost
of the transport, in the second the travel time.

- The output of the search method should be a nice representation of
the shortest path, e.g., as a string (“Taking the plane from city A to
B, then taking the plane from B to C,...”).

- Don’t forget to write tests for the algorithm (for example, does it
work for multiple edges from one city to another).

- Think about flexibility of your design. How hard would it be to add
additional modes of transportation or add a new type of cost (like
carbon footprint)?

¢) Implement the following city graph as an example and print the quickest
and cheapest path from Berlin to Cologne:

train
- Hamburg (50 €, 100 min)
(100 €, 240 min)
plane
(120 €, 50 min)
plane
(150 €, 30 min)

Berlin
Cologne

plane plane
(150 €, 40 min) (200 €, 40 min)

Munich



