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Goals
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GOALS for today

motivation: precision and variability in neural systems

practical experience with spike train data

‘howto’ estimate variability of intervals and counts

insight into the relation of interval and count statistics

usefulness of point process theory

Introductory reading:

Nawrot MP (2010) Analysis and Interpretation of Interval and Count Variability in Neural Spike
Trains. In: Analysis of Parallel Spike Trains, Grin S, Rotter S (Eds.), Springer, New York
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Outline
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1. Experimental spike trains

2. Introduction

3. Theory: Point process models

4. Practice: Empiric interval / count statistics

5. Course Data
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1. Experimental Spike Trains

- intracellular recording

- extracellular recording

- spike sorting

- spike train representation
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Recording Techniques | spatial vs. temporal resolution
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Recording Techniques | electrophysiology vs. imaging

Freie Universitat ;‘

electrophysiology

m direct measurement of neuronal signals

intracellular recording from
- single neurons / dendrites

extracellular recording of
- action potentials (SUA/MUA) and
- local field potential (LFP, indirect)

electrocorticography (ECoG)
- epicortical field potentials

" electroencephalography (EEG)

* magnetoencephalography (MEG)
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imaging

m visualization of single neuron activity

optical imaging of
intracellular Ca activity
- invitro / in vivo

-2D /3D

40 pm

m visualization of average activity
G@@ optical imaging with
RA \ voltage sensitive dyes
) P 4
R

functional magnetic
resonance imaging (fMRI)

positron emission tomography (PET)




Recording Techniques | electrophysiology vs. imaging

Freie Universitat

electrophysiology

m direct measurement of neuronal signals

intracellular recording from
- single neurons / dendrites

extracellular recording of
- action potentials (SUA/MUA) and
- local field potential (LFP, indirect)

m measurement of electric mass signals

electrocorticography (ECoG)
- epicortical field potentials

| electroencephalography (EEG)

magnetoencephalography (MEG)
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Imaging

m visualization of single neuron activity

optical imaging of
intracellular Ca activity
- in vitro / in vivo

-2D /3D

AT optical imaging with
ST et voltage sensitive dyes

functional magnetic
resonance imaging (fMRI)

positron emission tomography (PET)
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Intracellular Recording ok M M
reie universita

invitro | invivo
» sharp recording | patch recording
» whole-cell patch | dendritic patch

* infrared microscopy
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Intracellular Recording | spontaneous activity in vivo
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a
Intracellular recording in vivo
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Figure 1. Permanent background input in vivo causes dynamic fluctuations of the mem-
brane potential and drives the neuron to spontaneous spiking activity. (A) Membrane
potential recorded intracellularly in the frontal cortex of the anesthetized rat. Presynaptic inputs
from several hundreds or thousand of presynaptic neurons cause depolarization of the cell to a
resting potential of about —50 mV and salient fluctuations of the membrane potential. (B) The
enlarged cut-out from A reveals the fine structure of the signal that results form the superposi-
tion of many single EPSPs and IPSPs and gives an impression of the time scale on which these
fluctuations take place. Data by courtesy of Detlef Heck (Léger, Stern, Aertsen, & Heck, 2003).
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Intracellular Recording | spontaneous activity in vivo
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a
Intracellular recording in vivo
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Figure 1. Permanent background input in vivo causes dynamic fluctuations of the mem-
brane potential and drives the neuron to spontaneous spiking activity. (A) Membrane
potential recorded intracellularly in the frontal cortex of the anesthetized rat. Presynaptic inputs
from several hundreds or thousand of presynaptic neurons cause depolarization of the cell to a
resting potential of about —50 mV and salient fluctuations of the membrane potential. (B) The
enlarged cut-out from A reveals the fine structure of the signal that results form the superposi-
tion of many single EPSPs and IPSPs and gives an impression of the time scale on which these
fluctuations take place. Data by courtesy of Detlef Heck (Léger, Stern, Aertsen, & Heck, 2003).
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Extracellular Recording
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Dendrit
mit Synapsen

Soma

Axonhiigel

Axon ‘
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Extracellular Recording | recording sphere
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' I Valentino Braitenberg & Almut Schiiz
/‘ Cortex: Statistics and Geometry of Neuronal Connectivity
¢ . Springer, Berlin, 1998 (Second Edition)
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Extracellular Recording | electrophysiological setup
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Impedanzwandler
Eingang + Verstarkung~10x
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und Notchfilter (50Hz)
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Extracellular Recording | raw signal and Multi Unit Activity [MUA]

e:\data\RatInVivo\ExtInVivo_samples\050721_12ext_1cell Spike001_Ch6_7 sec1 20.smr
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Extrazellulare Aufnahmen im somatosensorischen Kortex der Ratte. Spontanaktivitat unter Anésthesie.
Data Curtsey: Clemens Boucsein und Dymphie Suchanek, Neurobiologie & Biophysik, Universitat Freiburg
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Extracellular Recording | raw signal and Multi Unit Activity [MUA]
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e:\data\RatInVivo\ExtInVivo_samples\050721_12ext_1cell Spike001_Ch6_7 sec1 20.smr

threshold : 5 x SD
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Extrazellulare Aufnahmen im somatosensorischen Kortex der Ratte. Spontanaktivitat unter Anésthesie.
Data Curtsey: Clemens Boucsein und Dymphie Suchanek, Neurobiologie & Biophysik, Universitat Freiburg
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Extracellular Recording | raw signal and Multi Unit Activity [MUA] g
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Extrazellulare Aufnahmen im somatosensorischen Kortex der Ratte. Spontanaktivitat unter Anésthesie.
Data Curtsey: Clemens Boucsein und Dymphie Suchanek, Neurobiologie & Biophysik, Universitat Freiburg

M Nawrot = 2" G-Node Winter Course in Neural Data Analysis = March 2010 17



Extracellular Recording | spike sorting: Single Unit Activity [SUA]
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2. Introduction

M Nawrot = 2nd G-Node Winter Course in Neural Data Analysis = March 2010
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Introduction

neocortex in vivo is permanently active

Intracellular recording in vivo
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Leger, Stern, Aertsen, Heck (2004) J Neurophysiol 93
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Introduction

Freie Universitat (1S

neocortex in vivo is permanently active
spike trains of single neurons are irregular in time

Intracellular recording in vivo
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Introduction
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neocortex in vivo is permanently active
spike trains of single neurons are irregular in time
highly variable responses upon repeated stimulation

84 112 ms

“ PSS
L fb

3a

i

3b

4a
4b

Arieli, Sterkin, Grinvald, Aertsen (1996) Science 273
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Introduction
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The Variable Discharge of Cortical Neurons: Implications for

Connectivity, Computation, and Information Coding

Michael N. Shadlen' and William T. Newsome?2

3872 J. Neurosci., May 15, 1998, 78(10):3870-3896

Table 1. Properties of statistical homogeneity for cortical neurons

Response property

Approximate value

Dynamic range of response

Distribution of interspike
intervals

Spike count variance

Spike rate modulation

0-200 spikes/sec

Approximately exponential

~ Poisson
Variance —1-1.5 times the mean
count FF > 1

Expected rate can vary in ~1 ISI,
5-10 msec

500

1000 1500 2000

Time (ms)

B .
gzoo' ‘
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C Time (ms)
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c
@
=3
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D Interspike interval (ms)
- o
860 -
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40 ere
o
>20 ¥
" <
0 20 40 60
Mean count

= spiking process more variable than the Poisson process ! (?)
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Introduction
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What are the sources of cortical single neuron variability in vivo?

Variability of presynaptic
spike trains (Shared)

Presynaptic . ”II ”" ll

spike train

Stochastic synaptic
vesicle release
(Private)

#v\\ Channel noise &

Thermal noise
(Private)

Whole-cell
recording
electrode

Soma

8 : Axon e
Recording noise I = output variability

(Private) Output

spike train

DeWeese & Zador (2004) J Neurophysiol 92
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, Berlin
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Introduction
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What are the sources of cortical single neuron variability in vivo?

Variability of presynaptic

spike trains (Shared)
e IR
:pikztrali.: ! ”" \N

vesicle release
(Private)

Whole-cell
recording

electrode Thermal noise

(Private)

Stochastic synaptic <

intrinsic sources

*v\\ Channel noise &

=

/. . Axon T
Repanc g notse I = output variability
(Prlvate) Output
spike train

M Nawrot = 2" G-Node Winter Course in Neural Data Analysis = March 2010

DeWeese & Zador (2004) J Neurophysiol 92
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What are the sources of cortical single neuron variability in vivo?

Variability of presynaptic

splks tralns [Shared) < extrinsic sources

spike train

Presynaptic I "l II
| TS
\

Stochastic synaptic <
vesicle release

(Private) intrinsic sources
*v\\ Channel noise & =

Thermal noise
(Private)

Whole-cell
recording
electrode

Soma

8 : Axon yr
Recording noise WIT [ = output variability

(Private) Output

spike train

DeWeese & Zador (2004) J Neurophysiol 92
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3. Theory: Stochastic Point Processes

- interval and count random variables
- Poisson process

- renewal process

- nonhomogenous Poisson process

- non-renewal processes

M Nawrot = 2nd G-Node Winter Course in Neural Data Analysis = March 2010 27



Point Processes o }g“%
Freie Un1ver51tat )

Berlin

3;«‘“

A point is a discrete event that occurs in continuous time (or space). We regard
action potentials as point events ignoring their amplitude and duration.
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Interval and Count | Random variables

Freie Universitat
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2 basic random variables :

- inter-event intervals X (continuous random variable)
- number of spikes N (discrete random variable) in interval of length T

Any point process definition uniquely determines its interval and count
stochastic, and both random variables are related.

101000010p0100000000001010010100000100P10100000000001

binary representation

M Nawrot = 2" G-Node Winter Course in Neural Data Analysis = March 2010 29



Poisson process | intensity definition
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One possibility to define a point process is the complete intensity function.

Consider a point process as defined on the complete time axis (—o,+x). Let H,
denote the history of the process, i.e. a specification of the position of all
points in (oo, t]. Then a general description of this process maybe formulated
in terms of the probabilities of observing a single event at an arbitrary time t

P(N(t,t+6t) = 1|H;}
Definition

The Poisson process of intensity A is defined by the requirements that for all t
and for 0—-0+

PIN(t,t +6t) = 1|H,} = \d + o(9)

- the only process for which all events are completely independent
- ‘simple process’, often used for the description of neural spiking
- the Bernoulli process approximates the Poisson process for At — 0.

M Nawrot = 2" G-Node Winter Course in Neural Data Analysis = March 2010 30



Poisson process

Example 1: radioactive decay of 239Pu (half-life : 4110 years).

- continuous time intervals
- discrete event count

events per year events per 10 years
40 ‘ : ‘ ' i ‘ : ‘

400

300

count

200

count

100

0
0 5 10 15 20 0 50 100 150 200

time (y) time (y)
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Poisson process
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Example 2: rain drops

- continuous space intervals Ty
- discrete event count < L, -

0 .o ..- ..

[
0 total = 97 0 total = 961 1

count per 10cm?

'm N i
B
ol " "

o HEES B |

0 1

count per 10cm?
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Renewal Process | definition

Definition

inter-event intervals are independent and identically distributed (iid)

M Nawrot = 2nd G-Node Winter Course in Neural Data Analysis = March 2010

time

t = replacement from a homogeneous population
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Renewal Process | definition

Definition

inter-event intervals are independent and identically distributed (iid)
Thus

* individual intervals are serially independent

* process history extends only up to the previous event

* the intervals between successive points are mutually independent
 the Poisson process is a renewal process

time

t = replacement from a homogeneous population

M Nawrot = 2nd G-Node Winter Course in Neural Data Analysis = March 2010 34



Renewal Process | model distributions
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dead-time Poisson gamma log-normal
A B C
S S e
T T ©
o o o
0 0.5 1 0 0.5 1 0 0.5 1
Time (s) Time (s) Time (s)
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Model classes
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® I

constant intensity A dynamic intensity A(t)
Poisson
* exponential interval distribution non_homogenous
* Poisson count distribution .
« events are uniformly distributed in time POlSSOﬂ

* special case of gamma process

Renewal Rate modulated
* iid interval distribution
e Gy Renewal
stationary

non-Renewal

* constant intensity parameter
* non-trivial history dependence
« serial interval correlations

iIncreasing importance of process history
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4. Practice: Empiric Interval and Count Statistics
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Inter-spike intervals
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inter-spike intervals
continuous data
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Spike count
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spike count
discrete data
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Introduction g
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Introduction

Coefficient of variation (interval variability)

,_ Var(ISI)
mean*(ISI)

Cv

Fano factor (count variability)

FF— Var(count)
mean(count)
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Introduction

Coefficient of variation (interval variability)

2 _ Var(1SI)
mean*(ISI)

Cv

Fano factor (count variability)

FF— Var(count)
mean(count)

theoretic relation for renewal process

FF =CV?

M Nawrot = 2" G-Node Winter Course in Neural Data Analysis = March 2010
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Caution : Estimation bias CV T
Freie Universitat 2 i& )‘g Berlin
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We observe intervals in finite time interval ! o
Equilibrium

TT [ T

! = !

Trials

| e |
| I |

| ‘ II—|I—I | |
—— | ———
| I I
| | e | I
e s | |

-1 0 1 2 3
Operational time

gamma process in vitro

p.d.f.

0 S| 3 0 ISI (ms) 9%

Nawrot et al. (2008) J Neurosci Meth 169: 374:390
Nawrot (2003) PhD Thesis
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Caution : Estimation bias CV

i

ot
Freie Universitit i’(‘ 1
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Mean ISI
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Variance of ISls
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cV?
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0
0 5 10 15

» CV is underestimated for a low count number
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gamma process

Window width
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Nawrot et al. (2008) J Neurosci Meth 169: 374:390
Nawrot (2003) PhD Thesis
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Caution : Estimation bias FF /@%‘l%
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» FF approaches unity for a decreasing count number

Nawrot et al. (2008) J Neurosci Meth 169: 374:390
Nawrot (2003) PhD Thesis
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Problem for CV measurement : rate modulation
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D T345 : heptanone
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Krofczik S, Menzel R, Nawrot MP (2008) Front Comp Neurosci 2:9
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Problem for CV measurement : rate modulation Y
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Solution :

100¢

p [Hz]

100}

L [Hz]

50

20}
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1. rate estimation

H NN 1] H H\
’/ '

500
time [ms]

1000

Freie Universitat ({18

i)=Y K(t—1)

i=1

Table 1
Tested kernel functions®

Kernel K(t, o) Support
F | — _
Boxcar _ [ /30. /30]
2/3c
Triangle 1 —~ .
= @ ,"60'—|f‘ [—\,"6(7.\,"60']
anechnikov 3 r? =
Epanechnikoy _ (l _2> [~ /50301
4./50\ 90
Gauss 1 ?
—exp| —5 [— 0,4 0]
V2na e

= 1.3 TASK B 12 - 13

Nawrot, Aertsen, Rotter (1999) J Neurosci Meth 94: 81-92
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Solution : 2. Measurement of CV in operational time

Freie Universitat |Berlin
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Nawrot et al. (2008) J Neurosci Meth 169: 374:390
Meier, Egert, Aertsen, Nawrot (2008) Neural Networks 21:1085-1093
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Solution : 2. Measurement of CV in operational time
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Nawrot et al. (2008) J Neurosci Meth 169: 374:390
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5. Course Data

- intracellular in vivo : Al

- intracellular in vitro : A2, B1

- extracellular mushroom body honeybee : B2
- point process simulation : C1/C2/C3
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A1l : Spontaneous activity in vivo

Freie Universitat ‘Berh'n

Experiments by Clemens Boucsein and Yamina Seamari, Uni Freiburg

- In vivo intracellular recordings from cortical neurons in anesthetized rat
- spontaneous activity (no stimulation)

5mV

Al data set 040528 boucsein

Nawrot et al. (2007) Neurocomputing 70: 1717-1722
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A2/B1 : Stationary noise current injection in vitro ’%lﬂ,
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Experiments with Clemens Boucsein and Victor Rodriguez, Uni Freiburg

- In vitro patch clamp recordings from pyramidal cells (acute slice)
- stationary noise current injection (5-20min)
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B1 DCS 041020 cortexl 2cell008

Nawrot et al. (2008) J Neurosci Meth 169: 374 - 390
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A2 : Stationary noise current injection in vitro

pure excitation
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mixed excitation + inhibition 2:1
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Nawrot et al. (2008) J Neurosci Meth 169: 374 - 390



B1 : noise current injection in vitro
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Nawrot et al. (2008) J Neurosci Meth 169: 374:390
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C1/C2/C3 : Non-renewal point process simulation

Freie Universitat

Autoregressive model approach

We propose the following process to model inter-event intervals

Ay = exp(Xs) = exp(BXs1 + &) (1 5]<1)

When we choose &, normal distributed with mean py and variance
02 then A, is log-normal distributed.

B=0 : no correlation = renewal model
B<0 : negative serial correlation
B>0 : positive serial correlation

C1 Simulation | C2_Simulation | C3_Simulation

Farkhooi, Strube-Bloss, Nawrot (2009) Phys Rev E 79
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C1/C2/C3 : Non-renewal point process simulation

S,

Numeric Simulation
log-normal
CV = 0.5
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Farkhooi, Strube-Bloss, Nawrot (2009) Phys Rev E 79
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A1l : Spontaneous activity in vivo | non-renewal properties |

Freie Universitat ; Berlin
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: |
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2s Experiments by Clemens Boucsein & Dymphie Suchanek
University of Freiburg, Germany
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Nawrot et al. (2007) Neurocomputing 70: 1717-1722
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Goals

Freie Universitat

GOALS for today

motivation: precision and variability in neural systems

practical experience with spike train data

‘howto’ estimate variability of intervals and counts

insight into the relation of interval and count statistics

usefulness of point process theory
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FIND

Freie Universitat

Open source tools for neural data analysis in MATLAB

Data Acquisition .
and Generation GIEER TS

Neuron Index x1000

0 20 40 60 80
time (ms)

Ralph Meler, BECN Freiburg

http://find.bccn.uni-freiburg.de

Meier R, Egert U, Aertsen A, Nawrot MP (2008) Neural Networks 21
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