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Computational Neuroscience 

experiment 

data analysis 

modeling 
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Goals 

GOALS for today 

 

 motivation: precision and variability in neural systems 

 practical experience with spike train data 

 ‘howto’ estimate variability of intervals and counts 

 insight into the relation of interval and count statistics 

 usefulness of point process theory 

 

 

Introductory reading:  

Nawrot MP (2010) Analysis and Interpretation of Interval and Count Variability in Neural Spike 

Trains. In: Analysis of Parallel Spike Trains, Grün S, Rotter S (Eds.), Springer, New York 
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Outline 

1. Experimental spike trains 

2. Introduction 

3. Theory: Point process models 

4. Practice: Empiric interval / count statistics 

5. Course Data 
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1. Experimental Spike Trains 

- intracellular recording  

- extracellular recording 

- spike sorting 

- spike train representation 
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 (adapted from Matt Fellows) 

PET 

20μm 

Vm 

intracellular 

Ca-imaging 

Recording Techniques | spatial vs. temporal resolution 
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20μm 

electrophysiology        imaging 

 direct measurement of neuronal signals                  visualization of single neuron activity 

intracellular recording from 

- single neurons / dendrites 

extracellular recording of 

- action potentials (SUA/MUA) and 

- local field potential (LFP, indirect) 

electrocorticography (ECoG) 

- epicortical field potentials 

electroencephalography (EEG) 

magnetoencephalography (MEG) 

optical imaging with  

voltage sensitive dyes 

functional magnetic 

resonance imaging (fMRI) 

positron emission tomography (PET) 

 measurement of electric mass signals   

optical imaging of 

intracellular Ca activity 

- in vitro / in vivo 

- 2D / 3D 

 visualization of average activity   

imaging pics from: 

Stosiek03 

Recording Techniques | electrophysiology vs. imaging 
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20μm 

electrophysiology        imaging 

 direct measurement of neuronal signals                  visualization of single neuron activity 

intracellular recording from 

- single neurons / dendrites 

extracellular recording of 

- action potentials (SUA/MUA) and 

- local field potential (LFP, indirect) 

electrocorticography (ECoG) 

- epicortical field potentials 

electroencephalography (EEG) 

magnetoencephalography (MEG) 

optical imaging with  

voltage sensitive dyes 

functional magnetic 

resonance imaging (fMRI) 

positron emission tomography (PET) 

 measurement of electric mass signals   

optical imaging of 

intracellular Ca activity 

- in vitro / in vivo 

- 2D / 3D 

 visualization of average activity   

imaging pics from: 

Stosiek03 

Recording Techniques | electrophysiology vs. imaging 
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20m 

• in vitro  |  in vivo  

• sharp recording |  patch recording 

• whole-cell patch | dendritic patch 

• infrared microscopy 

© Clemens Boucsein 

© M Nawrot 

Intracellular Recording 



10 ©
 M

a
rt

in
 N

a
w

ro
t 

· 
N

e
u

ro
if
n

o
rm

a
ti
c
s
 /
 T

h
e

o
re

ti
c
a
l 
N

e
u

ro
s
c
ie

n
c
e
 ·

 F
re

ie
 U

n
iv

e
rs

it
ä

t 
B

e
rl
in

 

M Nawrot ▪ 2nd G-Node Winter Course in Neural Data Analysis ▪ March 2010 

© Clemens Boucsein 

Intracellular Recording | spontaneous activity in vivo  
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© Clemens Boucsein 

‘Spike Train’ 

Intracellular Recording | spontaneous activity in vivo  
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► metal    |  silicon  |  glas electrodes 

► spike output activity   

► in vitro  |  in vivo  

culture in vitro 

Extracellular Recording 
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Valentino Braitenberg & Almut Schüz 

Cortex: Statistics and Geometry of Neuronal Connectivity 

Springer, Berlin, 1998 (Second Edition) 

Cortex 

Extracellular Recording | recording sphere 
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spikes field potential 

Extracellular Recording | electrophysiological setup 
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Extrazelluläre Aufnahmen im somatosensorischen Kortex der Ratte. Spontanaktivität unter Anästhesie.  

Data Curtsey: Clemens Boucsein und Dymphie Suchanek, Neurobiologie & Biophysik, Universität Freiburg  

Extracellular Recording | raw signal and Multi Unit Activity [MUA] 
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Extrazelluläre Aufnahmen im somatosensorischen Kortex der Ratte. Spontanaktivität unter Anästhesie.  

Data Curtsey: Clemens Boucsein und Dymphie Suchanek, Neurobiologie & Biophysik, Universität Freiburg  

Extracellular Recording | raw signal and Multi Unit Activity [MUA] 
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‘Spike Train’ 

Extrazelluläre Aufnahmen im somatosensorischen Kortex der Ratte. Spontanaktivität unter Anästhesie.  

Data Curtsey: Clemens Boucsein und Dymphie Suchanek, Neurobiologie & Biophysik, Universität Freiburg  

Extracellular Recording | raw signal and Multi Unit Activity [MUA] 
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Extrazelluläre Aufnahmen von α-extrinsischen Neuronen im Bienengehirn. Antwort auf Duftreiz.  

Data Curtsey: Dr. Martin Strube, Neurobiologie, Freie Universität Berlin 

Extracellular Recording | spike sorting: Single Unit Activity [SUA] 

error prone ! 

~1-2ms 
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2. Introduction 



20 ©
 M

a
rt

in
 N

a
w

ro
t 

· 
N

e
u

ro
if
n

o
rm

a
ti
c
s
 /
 T

h
e

o
re

ti
c
a
l 
N

e
u

ro
s
c
ie

n
c
e
 ·

 F
re

ie
 U

n
iv

e
rs

it
ä

t 
B

e
rl
in

 

M Nawrot ▪ 2nd G-Node Winter Course in Neural Data Analysis ▪ March 2010 

 neocortex in vivo is permanently active  

  

Introduction 

Leger, Stern, Aertsen, Heck (2004) J Neurophysiol 93 
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 neocortex in vivo is permanently active  

 spike trains of single neurons are irregular in time 

Introduction 

Leger, Stern, Aertsen, Heck (2004) J Neurophysiol 93 
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Arieli, Sterkin, Grinvald, Aertsen (1996) Science 273 

 neocortex in vivo is permanently active  

 spike trains of single neurons are irregular in time  

 highly variable responses upon repeated stimulation 

Introduction 
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Introduction 

FF > 1 

~ Poisson 

 spiking process more variable than the Poisson process ! (?) 
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DeWeese & Zador (2004) J Neurophysiol 92 

Introduction 

 output variability 

What are the sources of cortical single neuron variability in vivo? 
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DeWeese & Zador (2004) J Neurophysiol 92 

  
 
intrinsic sources 
 
 

Introduction 

 output variability 

What are the sources of cortical single neuron variability in vivo? 
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DeWeese & Zador (2004) J Neurophysiol 92 

 extrinsic sources 

  
 
intrinsic sources 
 
 

Introduction 

 output variability 

What are the sources of cortical single neuron variability in vivo? 
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3. Theory: Stochastic Point Processes 

- interval and count random variables 

- Poisson process 

- renewal process 

- nonhomogenous Poisson process 

- non-renewal processes 
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Point Processes 

A point is a discrete event that occurs in continuous time (or space). We regard 

action potentials as point events ignoring their amplitude and duration. 

 

A point process is a mathematical description of a process that generates 

points in time (or space) according to defined stochastic rules (probability 

distribution). 

 

Only a finite number of events are generated within a finite time observation 

interval (true for neural spike train). 

 

In computational neuroscience point processes are used to simulate single 

neuron activity and to predict the statistical measures of spiking activity. 
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Interval and Count | Random variables 

2 basic random variables : 

 

-  inter-event intervals X (continuous random variable) 

-  number of spikes N (discrete random variable) in interval of length T  

  

 

 

 

 

 

Any point process definition uniquely determines its interval and count 

stochastic, and both random variables are related. 

 

10100001000100000000001010010100000100010100000000001 

binary representation 
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Poisson process | intensity definition 

One possibility to define a point process is the complete intensity function.  

 

Consider a point process as defined on the complete time axis (−,+). Let Ht 

denote the history of the process, i.e. a specification of the position of all 

points in (−, t]. Then a general description of this process maybe formulated 

in terms of the probabilities of observing a single event at an arbitrary time t 

 

 

 

Definition 

 

The Poisson process of intensity λ is defined by the requirements that for all t 

and for   δ0+ 

 

 

 

 

- the only process for which all events are completely independent 

- ‘simple process’, often used for the description of neural spiking  

- the Bernoulli process approximates the Poisson process for Δt  0. 
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Poisson process 

Example 1: radioactive decay of 239Pu (half-life : 4110 years). 

 

- continuous time intervals 

- discrete event count 

c
o

u
n

t 

c
o

u
n

t 
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Poisson process 

Example 2: rain drops 

 

- continuous space intervals 

- discrete event count 
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Definition 

 

inter-event intervals are independent and identically distributed (iid) 

 

Thus 

 

• individual intervals are serially independent 

• process history extends only up to the previous event 

• the intervals between successive points are mutually independent 

• the Poisson process is a renewal process 

 

Renewal Process | definition 
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Definition 

 

inter-event intervals are independent and identically distributed (iid) 

 

Thus 

 

• individual intervals are serially independent 

• process history extends only up to the previous event 

• the intervals between successive points are mutually independent 

• the Poisson process is a renewal process 

 

Renewal Process | definition 
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dead-time Poisson gamma log-normal 

Renewal Process | model distributions 
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Poisson 
• exponential interval distribution 

• Poisson count distribution 

• events are uniformly distributed in time 

• special case of gamma process 

 

non-homogenous  

Poisson 

Renewal 
• iid interval distribution 

• FF = CV2 

 

Rate modulated  

Renewal 
 

stationary 

non-Renewal 
• constant intensity parameter 

• non-trivial history dependence 

• serial interval correlations  

Model classes 

in
c
re

a
s
in

g
 i
m

p
o
rt

a
n
c
e
 o

f 
p
ro

c
e
s
s
 h

is
to

ry
 

constant intensity λ dynamic intensity λ(t) 
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4. Practice: Empiric Interval and Count Statistics 
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inter-spike intervals 

continuous data 

Inter-spike intervals 
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spike count 

discrete data 

Spike count 
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Introduction 

time 

tr
ia

l 

Coefficient of variation (interval variability) 
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Introduction 

time 

tr
ia

l 

 Fano factor (count variability) 

)(

)(

countmean

countVar
FF 

Coefficient of variation (interval variability) 
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Introduction 

time 

tr
ia

l 

 Fano factor (count variability) 

)(

)(

countmean

countVar
FF 

Coefficient of variation (interval variability) 

 theoretic relation for renewal process 

2CVFF 
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Caution : Estimation bias CV 

Nawrot et al. (2008) J Neurosci Meth 169: 374:390 

Nawrot (2003) PhD Thesis 

We observe intervals in finite time interval ! 
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Caution : Estimation bias CV 

 

 

► CV is underestimated for a low count number 

Nawrot et al. (2008) J Neurosci Meth 169: 374:390 

Nawrot (2003) PhD Thesis 

 1.3 TASK A 6 - 9 
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Caution : Estimation bias FF 

 

 

► FF approaches unity for a decreasing count number 

Nawrot et al. (2008) J Neurosci Meth 169: 374:390 

Nawrot (2003) PhD Thesis 
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Problem for CV measurement : rate modulation 

Krofczik S, Menzel R, Nawrot MP (2008) Front Comp Neurosci 2:9 
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Problem for CV measurement : rate modulation 

Nawrot et al. (2008) J Neurosci Meth 169: 374:390 
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Solution : 1. rate estimation 

Nawrot, Aertsen, Rotter (1999) J Neurosci Meth 94: 81-92 

 1.3 TASK B 12 - 13 
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Nawrot et al. (2008) J Neurosci Meth 169: 374:390 

Meier, Egert, Aertsen, Nawrot (2008) Neural Networks 21:1085-1093 

Solution : 2. Measurement of CV in operational time 

‘unwarp’ spike train ! 
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Solution : 2. Measurement of CV in operational time 

Nawrot et al. (2008) J Neurosci Meth 169: 374:390 

 1.3 TASK B 14 - 15 
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5. Course Data 

- intracellular in vivo : A1 

- intracellular in vitro : A2, B1 

- extracellular mushroom body honeybee : B2 

- point process simulation : C1/C2/C3 
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Experiments by Clemens Boucsein and Yamina Seamari, Uni Freiburg 

 

- In vivo intracellular recordings from cortical neurons in anesthetized rat 

- spontaneous activity (no stimulation) 

2s 

5
m

V
 

Nawrot et al. (2007) Neurocomputing 70: 1717-1722 

A1 : Spontaneous activity in vivo 

A1_data_set_040528_boucsein 
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A2/B1 : Stationary noise current injection in vitro 

Experiments 

 

with Clemens Boucsein and Victor Rodriguez, University of Freiburg - Germany 

- In vitro patch clamp recordings from cortical pyramidal cells in acute slice preparation 

- stationary noise current injection (5-20min) 

Experiments with Clemens Boucsein and Victor Rodriguez, Uni Freiburg  

 

- In vitro patch clamp recordings from pyramidal cells (acute slice) 

- stationary noise current injection (5-20min) 

A2_data_set_2003_rodriguez_nawrot 

B1_DCS_041020_cortex1_2cell008 
Nawrot et al. (2008) J Neurosci Meth 169: 374 - 390 
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A2 : Stationary noise current injection in vitro 

Nawrot et al. (2008) J Neurosci Meth 169: 374 - 390 
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B1 : noise current injection in vitro 

Nawrot et al. (2008) J Neurosci Meth 169: 374:390 

 1.3 TASK B 14 - 15 
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C1/C2/C3 : Non-renewal point process simulation 

Autoregressive model approach 

 

We propose the following process to model inter-event intervals 

 

 

 

When we choose εs normal distributed with mean μ and variance 

σ2 then Δs is log-normal distributed.  

 

=0 : no correlation = renewal model  

<0 : negative serial correlation  

>0 : positive serial correlation  

Farkhooi, Strube-Bloss, Nawrot (2009) Phys Rev E 79 

C1_Simulation | C2_Simulation | C3_Simulation 
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C1/C2/C3 : Non-renewal point process simulation 

Numeric Simulation 

log-normal 

CV = 0.5 

 

 

Now we are in the position to investigate the effect of serial correlations by means of point 
process simulation and also analytic treatment of the point process model 

Farkhooi, Strube-Bloss, Nawrot (2009) Phys Rev E 79 
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A1 : Spontaneous activity in vivo | non-renewal properties | 

2s 
5
m

V
 

Experiments by Clemens Boucsein & Dymphie Suchanek  

University of Freiburg, Germany   

Nawrot et al. (2007) Neurocomputing 70: 1717-1722 

X1   X2 

X2   X3 

X3   X4 

   :       :  

 

Xi   Xi+1 
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Goals 

GOALS for today 

 

 motivation: precision and variability in neural systems 

 practical experience with spike train data 

 ‘howto’ estimate variability of intervals and counts 

 insight into the relation of interval and count statistics 

 usefulness of point process theory 
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http://find.bccn.uni-freiburg.de 

FIND 

Meier R, Egert U, Aertsen A, Nawrot MP (2008) Neural Networks 21 

Open source tools for neural data analysis in MATLAB 
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FIN 


